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Learning objectives

At the end of this workshop you . . .
I will know what data may be useful for video analytics.

I will understand different methods to compute the watching time.

I can apply information retrieval techniques to analyze video footage.

I have made first experiences with tools like Vi-Logger, ffmpeg, and Praat.

I can explain how to make use of visual analytics in order to better understand
video usage as well as learning activities of groups and individuals.
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1 Introduction
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Introduction
Video-based Learning

I Video-On-Demand traffic increase of 29% between 2013 and 2018 [8]
I 75% of the university students in Germany using videos for learning

(n=27,473) [35]
I formats: flipped classroom (e.g. [13, 39, 26]), MOOCs (e.g. [16])
I many different video learning environments,

http://designingvideointerfaces.nise81.com/portals

Video Analytics
Learning Analytics methods applied on video-based learning.

I inform instructors about (ongoing) learning activities
I help students to self-regulate their learning
I improve learning resources
I foster group awareness
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Specifics of time [23]

Granularity of time:
I hierarchical system of granularities:

. . . , ms, sec, minutes, hours, days, . . .
I cycles and re-occurrences

(cf. [22])

Temporal primitives: time points and intervals

Structures of time:
I ordered time: hierarchy and cycles
I branching time: describe or prepare planings or predictions
I multiple perspectives: subjective views on the same event
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Presentation time

(cf. [21])
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2 Data Gathering
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Gathering data from online video players
HTML

1 <video id="myvideo" width="320" height="240" controls >
2 <source src="video.mp4" type="video/mp4">
3 </video >

Javascript
1 var video = document.getElementById( "myvideo" );
2
3 video.addEventListener(’timeupdate ’, function(e){
4 console.log( video.currentTime );
5 });
6
7 setInterval(print , 2000);
8
9 function print(){

10 console.log( video.currentTime );
11 }

Resulting Logs
1 utc phase group user video action
2 1477209428123 6 d 34 45 playback
3 1477209423121 6 d 12 45 pause
4 1477209418125 6 a 23 46 addComment
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Approximating Playback Duration

Method Source Inadequacy

Timeupdate No active watching; too detailed;

Segments [28, 32, 25, 43, 24] Segment size; rounding errors; no active watching;

Clickstream [41] Long periods without clicks are not considered;

Heartbeat [4, 5] No active watching; beat frequency; interactions bet-
ween the beats;

Section visits [28, 45, 32] Partly watched section count like fully watched ones;

Challenges:
I determine active watching / learning phases
I considering varying playback rates
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Determining playback duration from clickstreams [41]
Input:
Log : Clickstream log
ε Tolerance

Function getUserPlaybackTime(userSessionLog)
tmp ← userSessionLog [0]
for i = 1; i < length(userSessionLog); i ← i + 1 do

timeDistance ← userSessionLog [i ].utc − tmp.utc
playbackDistance ←
userSessionLog [i ].playbacktime − tmp.playbacktime
if playbackDistance > 0 then

if (timeDistance − playbackDistance) ≤ ε then
playbackTime ← playbackTime + playbackDistance

end
end
tmp ← Log [i ]

end
return playbackTime

End

aUserLog ← extractUserData(Log , userA)
aUserSession← getSession(aUserLog , 2)
playbackTime ← getUserPlaybackTime(aUserSession)
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Hands-on: Optimal approximation of playback duration
Assignment:
Use the Video-Logger and play around withe the log settings. Configure a perfect
logger to determine the playback duration considering the precision, effort, and
data economy.

Vi-Logger: https://nise.github.io/vi-logger/public/
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Video Properties

Production properties:
– length [18],
– visual transitions [26, 24],
– production style: classroom lecture, talking head, digital tablet drawing,
presentation slides [18]

Content properties:
– type of video (e.g. lecture, tutorial, documentary) [18, 17],
– speaking rate [18, 24, 1],
– speech / discourse analysis [24, 14, 1],
– speech / audio volume, pitch frequency [24]
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Example: Speaking Rate

speakingRate = number of syllables
video duration ≥ number of syllables

video duration−pause time

1. Extract audio from the the video

$ ffmpeg -i video.mp4 -ab 160k -ac 2 -ar 44100 -vn audio.wav

2. Install and open Praat from http://www.fon.hum.uva.nl/praat/

3. Download and open the speech rate script in Praat,
https://sites.google.com/site/speechrate/Home

4. Run the script by pressing Ctrl+R and chose a directory containing a *.wav
audio file

Output
nsyll npause duration (s) phonation-

time (s)
speechrate
(nsyll/dur)

articulation
rate (nsyll /
phonation-
time)

ASD
(speaking-
time/nsyll)

27999 2010 7477.91 5757.28 3.74 4.86 0.206
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Example: Shot detection
video still images tonal distribution chi square

1. Extract still images from video

ffmpeg -i video.mp4 -vf fps=1/5 i%03d.jpg -hide_banner

(every 5 seconds)

2. Determine histogram differences using chisquare

sh ./histcompare.sh -p global -n 0,1 -m chisquare i001.png i002.png

(see http://www.fmwconcepts.com/imagemagick/histcompare/index.php)

3. Consider shot positions for later analysis
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User Properties and Intentions
Questionnaires in advance

I demographic data [19, 27],
e.g. age, country of origin, prior knowledge, media usage

I personality types [37]

Surveying during video usage
I Predicting interesting segments from browsing data that was trained with

in-video questions about the current usage intention [44]
I Capture perceived difficulty at the end of the video [30]
I Content summarization

curios
aimless browse
found something intersting
abandoned interest
looking for something
resumed interest
found what I want
undetermined
none of the above

Very easy
Easy
Neutral
Difficult
Very difficult

How easy was it for you to understand 
the content of this video?

What's your browsing state?

Please summarize the last slide
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Sources of uncertainty

Error: outlier or deviation from a true value,

Imprecision: resolution of a value compared to the needed resolution (e.g., values
are highly accurately given for countries but are needed for states),

Accuracy: size of smallest interval for which data values exist,

Lineage: source of the data (e.g., raw satellite images or processed images), -
subjectivity – degree of subjective influence in the data,

Non-specificity: Lack of distinctions for objects (e.g., an area is known to be
used for growing crops, but not its specific kind),

Noise: undesired background influence
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3 Measurements for Modeling
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Measurements: watching behavior
Viewing duration Time spent on watching a video. [3, 6]

Replay segments Counting the number of segments that were played more than
once. [42]

Total watching time Total number of seconds spent viewing all videos. [37, 12]

Watching ratio Relative watching time per video. [12]

Watching threshold Minimum amount of time a video has been watched. [4]

Retention rate Number of unique users who watched a video segment [31, 24,
12] / the number of views for a particular moment of a video
as a percentage of the total number of views of the video. [29]

Coverage Fraction of the video that the student visited. [19]

Session length Time span between start and end of a session. [3, 18, 10]

Number of sessions Number of distinct user sessions. [3, 24]

Session views Number of viewings per session. [3]

Session length threshold Number sessions longer than n. [37]
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Measurements: video Interactions and learning results
Micro level: In-video interactions
play, pause/breaks, volume changes, full screen on/off, captions on/off, speed
changes, seek, seek forward, seek backward, seek from, seek to, slow forward, slow
reverse, fast forward, fast reverse
→ access patterns [20, 4, 41]
→ viewing and interaction profiles [34, 10, 7, 9, 31, 30]
→ in-video drop-outs [30, 26, 2]

Macro level: Inter-video interactions
→ navigation strategies [19]
→ course drop-outs [20, 4]

Learning results:
I video annotations: add / edit / use (e.g. [40])
I non-video services: comments, forum posts, wiki entries, . . .
I quizzes: performed quizzes, attempts, results [31, 33, 28, 15]
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Example: Sequence mining of micro interactions

1. Prepare input
user1: play,playback,playback,playback,pause,addComment,play,. . .
user2: play,playback,playback,playback,playback,playback,playback,. . .
user3: play,playback,playback,pause,play,addComment,addComment,. . .

2. Sequence Mining with the SPADE algorithm1

1 sequence support
2 1 <{addComment}> 0.6666667
3 2 <{pause}> 0.6666667
4 3 <{play}> 1.0000000
5 4 <{playback}> 1.0000000
6 5 <{addComment ,playback}> 0.6666667
7 6 <{pause ,playback}> 0.6666667
8 7 <{play ,playback}> 1.0000000
9 8 <{pause ,play ,playback}> 0.6666667

10 9 <{addComment ,play ,playback}> 0.6666667
11 10 <{addComment ,pause ,play ,playback}> 0.6666667

3. Compare frequent sequences among different groups of learners

1See also GSP, Prefix Span, Suffix Tree
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Learner Modelling
1. Prepare data

I remove automatic pauses [31]
I remove pauses longer than 10min [31]
I group seek events within a range of 1 s [43, 31]
I remove in-video drop outs (e.g. watched less then 10 sec)
I ignore sessions without interactions (?)

2. Compute video features
I prefer median over mean or sum for long-tail distributions

3. Clustering
I reduce dimensions: Principle Component Analysis
I select optimal number of clusters: Simple Structure Index
I clustering: e.g. unsupervised K-Means
I labeling of clusters by domination features of the centroids
I data distribution per dataset
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Modeling: video features

event frequency duration
total events [25, 9]
play [18, 34, 44, 3, 43, 17, 33, 24, 12, 9] [3]
pause [31, 28, 18, 34, 44, 3, 43, 17, 33, 24, 12, 42, 1, 9] [31, 3]
volume [28, 24]
full screen [24]
show captions [1]
speed changes [43, 24, 12, 1, 9]
mean speed [31]
slow forward [44]
slow reverse [44]
fast forward [34, 44, 11, 3] [3]
fast rewind [34, 44, 11] [3]
seeks [28, 44, 1, 9] [3, 31, 1]
seek forward [31, 28, 43, 17]
seek back [31, 28, 43, 17, 42]
seek from [12]
seek to [12]
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4 Visualizations
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Visualizations
Approaches [23]

I visualize time-related data
I visualize time per se, e.g. Gant Chart

Representing time [23]
I create spatial arrangements → time axis
I real world time → animation, video, etc.

Time axis:
I form: linear vs. circular
I scale: linear vs. logarithmic
I direction: left to right (cf. [38])

Histomap of Evolution
by John B. Sparks
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Purpose

Scope Target Audience

Usage Learners Instructors Researchers

Video regulate learning, reflexion improve material, adopt
instructions

*

User regulate learning,
reflexion, group awareness

(compare learners) *

Groups group awareness monitor courses/groups,
compare groups

*

26 / 38



Video usage: Interaction peaks [26]
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Video usage: Playback peaks II
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Video usage: Retention rate
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Video usage: Social Navigation

Mertens et al. (2010) [32]

Kim et al. (2014) [25]

Wald et al. (2015) [45]

Chatti et al. (2016) [6]
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Individual activities: Rewatching graphs [5]
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Individual activities: Rewatching graphs II (by day) [41]

32 / 38



Individual activities: Rewatching graph II (by tools) [41]
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Individual activities: Forward-backward diagrams [41]
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Group or cohort activities: Histograms [3]
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Group or cohort activities: CORDTRA diagram (cf. [36])
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Conclusion & future research direction
Conclusion

I Possible data sources for video analytics
I Different methods to approximate the watching time
I Analyzed video footage with information retrieval techniques
I Introduction to tools like Vi-Logger, ffmpeg, and Praat
I Applied visual analytics techniques in order to understand video usage and

learning activities

Furture research directions
I Generic learner models and viewing profiles
I Parameterization of data charts (e.g. forward-backward-diagram)
I Tooling: Log → report
I Learning Dashboards
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Further reading

Zaki J. Mohammed & Meira Wagner Jr. Daniel Rosenberg & Anthony Grafton
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