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Indicators of group learning in collaborative software 
development teams

Benjamin Weiher 1, Niels Seidel 1 , Marc Burchart 1 , Dirk Veiel 2

Abstract: The supervision of collaborative software projects is a great challenge for teachers. All 
learners involved must be able to participate in the learning process and group collaboration must 
be ensured, while the program code can take on a considerable size. In this paper, we identified,  
defined, and validated a total of 32 indicators for collaborative learning in software development 
teams. The resulting model describes collaborative interactions in programming teams considering 
7  indicators  for  code  quality,  16  group  participation  indicators,  and  9 indicators  for  group 
cohesion.  In  addition,  we presented a data  processing pipeline for extracting,  calculating,  and 
visualizing these indicators on a teacher dashboard. This approach enables teachers to keep track 
of  complex  group  activities  and  individual  contributions,  and  subsequently  provide  targeted 
formative feedback to the groups.

Keywords: Teaching Collaborative Programming; Learning Analytics; Group Assessment

1 Introduction

Software  development  takes  place  almost  exclusively  in  teams,  so  it  is  especially 
important to be a team player, to be organized, and to communicate properly [Ah13,  
RTLr19].  Learning  such  competencies  is  crucial  for  employability  and  has  great 
relevance for the job market. In higher education, these skills are therefore often trained 
in  groups,  within  the  context  of  computer-supported  collaborative  learning  (CSCL) 
[SMG20].  In  computer  science  education,  students  must  be  prepared  for  this 
collaboration by developing their competencies in the required methods (e.g. Scrum or 
Adaptive Software Development), tools, and the programming languages used. Hence 
version  control  systems  (e.g.  Git,  CVS,  and  SVN)  and  issue  tracking  systems  (e.g. 
GitLab, Bugzilla, and Zendesk) are widely used, both in education and in the software  
industry (e.g. [Gl19]). These systems generate data that can be used not only for risk 
analysis of projects (e.g. [MGM19]) but also to support students working together on a 
software project.
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In this paper, we argue that teachers can benefit from monitoring tools that represent 
students’ contributions in collaborative software development tasks. When supervising 
student teams in these settings, teachers need to maintain the learning situation for the 
students, ensure that all team members acquire knowledge in the different domains (e.g. 
project  management,  design,  development,  and  testing),  support  completely 
heterogeneous  students  (e.g.  regarding  skills,  pre-knowledge,  and  interests)  when 
problems  and  questions  arise,  and  provide  them  appropriate  feedback  during  the 
development phases. This guidance and support is an enormous challenge. In software 
project teams, the lines of code increase enormously over time. The code and its quality  
can often only be analysed with great effort. Furthermore, the individual contribution of 
each student across multiple files, commits, and branches is not easily to identify. Hence, 
the degree of collaboration can only be examined through student reports. Difficulties of 
individual students or even free-riding effects can remain hidden over a long period of 
time, so that the participation of all students in the learning process cannot be ensured.

Our presented approach aims to support teachers in the challenges mentioned above. The 
goal of this work is to identify, define, and validate indicators for collaborative learning 
in software development teams. To address the particularities of collaborative learning 
and software engineering, we pose the following three research questions: (RQ1) What 
indicators  can be used to describe  learner participation in collaborative  programming 
teams?  (RQ2) Which  indicators  provide  insights  into  collaborative  software 
development? (RQ3) What indicators are suitable for capturing code quality in dedicated 
programming  languages?  Finally,  a  fourth  research  question is  posed  combining the 
answers of the previous questions: (RQ4) How can teachers be supported in using these 
indicators? The indicators are derived from existing literature and adapted to the subject 
matter. Before the indicators are prepared for use by teachers, a validation is performed 
using real data sets from four learning groups. As a result of this work, teachers will be 
able to track complex group activities, code quality and individual contributions, and 
subsequently provide targeted formative feedback to the groups. 

With  this  paper,  we  contribute  to  the  field  of  CSCL  and  learning  analytics.  Our 
contribution  to  CSCL  consists  of  a  model  describing  collaborative  interactions  in 
programming  teams  considering  coding,  group  participation,  and  group  cohesion. 
Regarrding learning analytics, we present a processing pipeline for analysing data from 
version control systems and issue tracking systems. From this pipeline, we gain data for 
a teacher dashboard for monitoring individual and group-related progress across multiple 
iterations of software development.

2 Related Works

In  terms  of  teaching  and  learning,  there  is  already  some  work  that  investigates 
collaborative software development [Ri19, SA20, Bu20]. However, these only consider 
individual contributions, not the group collaboration. [Gi20] analyzed commit messages 
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and classified team members as being collaborative, cooperative, or solo-submitters. In 
contrast to our work, the authors only considered data from the version control system, 
but did not include the communication and discussion necessary for project management 
and  design.  Furthermore,  code  metrics  have  not  been  examined.  In  a  case  study 
[TWM20] investigated the use of GitHub as a teaching tool for individual assignments. 
By analyzing the commit history and evaluating the comment quality the authors tried to 
classify  students  in  order  to  find  proxies  for  grading.  This  attempt  was  not  very 
successful.  Unlike  our  research,  [TWM20]  did  not  intend  to  support  teaching  on 
collaborative  software  development  through  formative  but  data-driven  feedback 
provided by the teacher. Apart from the commits and the code comments, only a very 
small set of data was used for the modeling of indicators. The resulting source code and 
the communication among the students was not considered.  More advanced analytics 
approaches  consider,  for  example,  co-editing  networks  [GSS19],  commit  quality 
[AAM15],  refactoring  detection  [Ts18],  change  patterns  [MM19],  and  risky  commit 
prediction [RGS15], but without addressing aspects of learning. Beside that, automatic 
methods are still lacking for specific problems such as common errors in the use of Git 
[Er20]. Personal assistance systems support collaboration only on a low-level [ČS05] or 
even  hinder  it  [We20],  which  is  why instructors  still  play  a  central  role  in  guiding 
student groups. In our approach we wanted to use a comprehensive set of indicators to 
flexibly support different didactic scenarios, team and  project structures, and software-
technical possibilities.

3 Model for group learning in software development

Before we can start modeling, we need to know the data that is available for modeling 
and can later be extracted automatically from the systems used. In this case, we rely on a  
version control system and an issue tracker. Version control systems provide three types 
of information: (1) code-related data regarding the quantity and quality of the program 
(e.g.  code smells,  security  hotspots) as well  as (2)  logs and (3) content  of  commits, 
branches, and merges. Since the content data requires a qualitative analysis in view of 
the respective task, we focus on quantitatively exploitable data from the source code and 
the logs which are described in the following subsections. Issue trackers complement 
this data with created and commented issues, merge requests,  and project plans (e.g. 
Kanban board). The presented model aims at selecting a set of variables from version 
control system and source code that can be translated into quantitative indicators that are 
easy to acquire and process by teachers. The indicators should describe individual efforts 
as  well as  the cooperation in the  team. The chosen subset  helps teachers to provide 
regular individual and group feedback in terms of learning practical skills and increasing  
employability. Indicators focusing on efficiency gains and risk avoidance appeared to be 
more relevant in professional and economic contexts and have not been not considered  
here. The resulting indicators that are relevant for learning can be later used to present an  
overall picture of the collaborative process within a student-led software development 
team. This picture is intended to ensure and promote appropriate peer teaching with the 
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focus  on  supporting  students  in  solving  practical  tasks  or  problems  and  developing 
programming skills. The model is based on the previous work of [Ca10] on effective 
group models and the considerations of [HG01] about teamwork.

3.1 Indicators for software code maintainability (RQ3)

Usually, as the size of a software  project  increases,  so does  the number of program 
errors, security vulnerabilities, and the maintenance effort. Developers therefore try to 
use tools and selected programming languages to detect certain types of errors at an early 
stage or even to exclude them completely. Even novice programmers can make use of 
these tools and improve the quality of their code, as long as they have configured their  
development  environment  accordingly  and  as  long  as  they  can  understand  and 
implement  the  advice.  The  same  tools  for  the  analysis  of  the  software  code 
maintainability (cf.  [Ar20])  are suitable for the formative analysis and assessment of 
learning achievements in programming. We consider the indicators S1–S7 to be relevant 
in  order  to  answer  RQ  3:  (S1)  Programming  languages:  Number  of  programming 
languages including style sheet languages in use. In web development, for instance, this  
indicator can help to identify full-stack developers compared to the one that stick to a 
single programming language. (S2) Code smells: [Fo98] introduces the metaphor “code 
smells” to describe the patterns in the code that indicate  the need for code refactoring. 
The external behavior of the code remains the same when refactoring, while the internal  
structure improves, i.e., it appears tidier, more traceable, and easier to maintain [EM02]. 
(S3)  Cognitive complexity: Cognitive complexity is a measure of the understandability 
of a given piece of code, the complexity of which is determined by the number and order  
of control structures [Ca18]. (S4)  Security hotspots: The security hotspot describes the 
sensitive areas where security is more important than in other areas. The most important 
security hotspots are authentication, storage, cryptography, logic errors, synchronization 
and timing, and validation [Se19]. (S5)  Vulnerabilities:  The number of vulnerabilities 
that refers to problems in the source code identified from poor coding patterns [Fo98] 
that lead to bugs, security vulnerabilities, performance problems, design flaws, and other 
difficulties [So21].  (S6)  Bugs: Number of errors  due to  a specification that  was  not 
adhered to or incorrectly implemented (e.g. typing of return values).  (S7)  Duplicated 
lines: The absolute number of physical lines (not just lines of code) of source code that 
are involved in at least one additional location [CP13].

3.2 Indicators for participation (RQ1)

Extent of participation The extent of participation is a simple but essential aspect of 
collaboration. For collaboration to occur at all, the student must participate in the project. 
Following  [Ta19],  Commit  Count (P1),  Opened  Merge  Request  Count (P2),  Branch 
Count (P3), Comment Count (P4), and Issue Count (P5) has to be recorded. 
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Equal  participation In  a  collaborative  software  project,  individual  project  members 
may do  most  of  the  work.  In  an  effective  collaborative  group,  all  members  should 
participate  to  a  similar  degree  without  monopolizing  behavior  [Ca10].  Equal 
participation can be considered by the absolute deviation from the mean. In this way, the 
scope of individual contributions within a group can be quantified and compared using 
the indicators  Equal Commits (P6),  Equal Merges (P7),  Equal Issues (P8), and  Equal 
Comments (P9). 

Extent of roles Related to participation, another factor may regard the variety of roles 
taken on by the members of the group. A good group should be one in which roles are 
played flexibly with participants rotating their roles during an iteration. This seems to be 
indicative  of  the  attention  paid  to  the  whole  group’s  process  of  planning  tasks, 
developing  code,  and  reviewing  the  quality.  In  small  groups,  the  extent  to  which 
different roles are performed should be independent of assigned roles in agile projects 
(e.g.  product  owner) or traditional  roles  like team leader  or quality engineer.  In  this 
sense, we define an  Active Reviewer (P10) as someone who has left a comment on a 
merge  request.  This  indicator  is  the  ratio  of  active  reviewers  to  students  who have 
created a merge request. The share of Active Developer (P11) in a team considers those 
who created merge requests.  The relative number of  Active planner (P12) created or 
modified an issue.

Rhythm The rhythm of interactions is a metric that allows conclusions to be drawn 
about  the  synchronicity  of  activities.  Regular  and  constant  participation  can  be 
considered as an indicator of the individual’s ability to deal primarily with the needs of  
the group rather than with personal problems, which also avoids the risk of distraction 
and a decline in cognitive tension. Considered for this purpose are the indicators Coding 
Days (P13), Review Days (P14), Testing Days (P15), and Planning Days (P16). Coding 
Days, for instance, counts the number of days a developer has contributed code to the 
project. Similarly, this applies to other important team tasks such as planning, reviewing 
each other’s work, and testing.

3.3 Indicators for cohesion (RQ2)

Caring for one another among team members is critical to strengthening mutual trust and 
a  sense  of  belonging,  as  well  as  the  perception  of  positive  interdependence  among 
members of a group. (C1) Commit-Comment-Ratio: Describes the ratio of comments in 
commits to the number of commits created. In a collaborative project, the proportion of  
own commits and the number of comments should be balanced to ensure that the student 
both contributes their own code to the project and is willing to look at other students’ 
code. (C2) Reaction Time: Response time is the time it takes a reviewer to respond to a 
comment directed to them. The other team members should respond to a comment on 
time so that the questioner does not lose time. (C3) Responsiveness: The response time is 
the average time taken to respond to a reviewer’s comment with either another comment  
or a code revision. It shows the time between the last comment of the reviewer and the  
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response of the creator of a merge request. (C4)  Follow on Commits:  The number of 
code revisions added to a pull  request  after  it  was  opened for review.  Knowing the 
number of follow-up commits added to an open pull request will give you insight into 
the strength of your  code review process.  If  you see  a  trend where  many follow-up 
commits  are  added,  further  planning  and  testing  may  be  required  [Pl21].  The 
Receptiveness (C6) is the frequency with which the creator of the merge request takes 
comments as a reason to change the code (cf. [Pl21]). In addition to that, the Time to first 
Comment (C6) specifies the time between opening a pull request and the first reviewer  
commenting (cf. [Pl21]) and the Time to resolve (C7) is the time it takes to close a pull 
request (cf. [Pl21]). 

Mutual help in programming can be expressed in continuing or improving the work of 
others. Therefore, the indicator Helping others (C8) describes the percentage of commits 
that a developer has used to modify the code of his team members (cf. [Pl21]. Reactivity 
to proposals  (C9) Suggestions for new code contributions, which are called merge or 
pull requests, are essential for progress in a project. Therefore, suggestions from a team 
member must be immediately considered by the team. 

4 Realisation and validation

Building  on  the  indicators  defined  in  the  last  section,  we  describe  the  technical 
processing  steps  for  determining  the  indicators,  present  a  dashboard  for  monitoring 
groups, and validate the indicators using data from four student groups.

4.1 Analytics environment

The analytics environment is responsible for storing the transformed raw GitLab data, 
their analysis, and presentation to the teachers. The component consists of four modules:  
First,  the Extract,  Load,  Transform (ELT) [Go10]  module  performs  the  daily  job of 
extracting the data from the GitLab projects, loading  it to the Data Lake module, and 
pre-processing it for the analysis. Using SonarQube [So21] a code analysis is performed 
with the GitLab data, before the described indicators are computed. The Data Lake, as 
the second module,  stores the raw data  and their transformed version in a relational  
database  schema.  For  data  Analysis  the  third  module  performs  additional  analytics, 
including data validation as described in section 4.2. Finally, the fourth module consists  
of  a  Analytics  Dashboard  (AD)  used  by  teachers.  It  is  based  on  the  R  and  Shiny3 
package. For the AD the data from the Analytics and the Datalake is processed to a web-
based interactive visualization. Fig. 1 shows the resulting dashboard for an exemplary 
group of 6 students that have been collaborated over 3 iterations. The indicators’ values 
have been normalized for the sake of comparison. The visualization as small multiples 
enables  a  comparison  between  students  on  each  iteration  and  for  all  indicators.  For 

3 See https://shiny.rstudio.com/ (last accessed: 2021-06-27).

https://shiny.rstudio.com/
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instance, user 33 was commendably able to reduce the cognitive complexity of his code 
over the three iterations. User 34’s comparatively low participation (e.g.,  P1, P2, P4) 
should prompt the teacher to ensure learning success.  Regarding group cohesion, the 
teacher could discuss with the team how to achieve mutual help during the programming 
task, since indicators C1, C2, C3, and C8 have low values.

Fig. 1: Example output for the first three iterations of group C including the dimensions code 
quality (top), participation (middle), and cohesion (bottom)
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4.2 Validation of indicators

Our  first  attempt  to  validate  the  model  described  in  section  3  aims  at  testing  the 
appropriateness, feasibility, and expressiveness of the indicators. For the validation, we 
used data from four mixed software development teams that worked on a complex task 
over 7 iterations à 2 weeks as part of the course “Fachpraktikum CSCW” (cf. Tab. 1 ). 
The agile teams worked on different tasks, which were however comparable in terms of 
effort and demand, in regular dialog with a role-played customer. The teams consisted of 
5 to 6 students from Bachelor’s and Master’s programs in Computer Science. GitLab 
was used for collaboration.  Each group worked  in at  least  one GitLab project  using 
provided issue tracker, version control, etc.

Group Semester Participants Repositories Issues Commits
A WS 2019/20 5 1 191 4402
B WS 2020/21 5 1 192 2962
C WS 2020/21 6 1 145 2419
D WS 2020/21 5 3 128 1441

Tab. 1: Overview of the datasets used for validating the model

The indicators can be considered appropriate because they were piloted against the data 
of  the  teams  in  Tab.  1  and  discussed  with  experienced  teachers.  In  addition,  the 
indicators have been adopted from existing tools and research. In terms of feasibility, it  
must be ensured that all indicators in the model can be calculated using data from real 
courses. The tests have shown that the calculation is feasible for the datasets at hand. To 
validate the expressiveness of the indicators as a formative feedback instrument in the 
supervision of  student  teams,  the  indicators  should discriminate  students  to  estimate 
differences  among group members. This can be achieved by calculating the standard 
deviation (SD) among group members and the discrimination index (DI, see [De10]) 
across all indicators.  The SD indicates heterogeneous values of an indicator within a 
group.  If,  on the  other  hand,  the  values  within a  group  were  always  the  same,  the 
indicator would have little significance for a teacher. The number of review and planning 
days  appeared to be often the same for all  group members  and across  all  iterations.  
Certain indicators showed to be less expressive in the last iteration (e.g. C1, C2, C5, and 
C6)  when  the  groups  were  mainly  focused  on  bug  fixing  (e.g.  S6).  The  DI  is  the 
correlation of a particular indicator to the total score of all other indicators of a student. 
Values above .3 are considered good, between .2 and .3 acceptable, between .1 and .2 
marginal, and below .1 poor. Indicators that are not sufficiently different from others, 
i.e., have poor DI, should be removed from the model. Within groups and iterations, no 
indicators had a poor DI.

4.3 Discussion 

In this section, we briefly present and discuss the findings, limitations, and shortcomings 
of  our  current  approach.  We  will  first  address  the  measured  parameters,  then  the 
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processing, and finally the use of analytics. For reasons of space, we will limit ourselves 
to a brief listing regarding the measured parameters. (1) Since we used GitLab as the  
main  environment  for  collaboration,  the  team  lacked  an  integrated  communication 
option. Therefore, they communicated outside of GitLab so we could not track it. (2) 
Commits (e.g. P1, P6, and C4) often contained only small and rarely major changes. (3) 
In  pair  programming,  usually  only  the  driver  made  changes,  while  the  observer  or 
navigator  did  not  show  up  in  the  commit  log  (e.g.  C8).  (4)  There  was  a  natural  
fluctuation in team performance over the course of a semester. (5) The previous point 
was also influenced by external factors, e.g. holidays, vacations, sick leave. (6) Other 
study-related tasks or exams and associated workloads were not considered. (7) It was 
assumed that all students have the same preposition (e.g., skills, experiences, personality 
[NTC20],  health),  i.e.,  related  diversity  aspects  must  be  taken  into  account  by  the 
teacher. (8) The measured quantities were considered comparable atomic units, i.e. all 
commits were considered equal even if they differed in terms of number of changes,  
level of difficulty, and their relevance to the final program (e.g. P1, P6, and C4). (9)  
Students  may have used code snippets  or  libraries  from others  (e.g.,  from the  web) 
without acknowledging or referencing the sources. (10) Since students had to perform all 
roles at least once, role changes occurred after one iteration, which then led to different 
behaviours  that  were  not  yet  considered  in  the  validation  of  our  approach.  (11) 
Compared to many related works (e.g. [Gi20, TWM20]) we did not classify groups or 
individuals  to  provide  a  flexible  tool  for  different  learning  and  teaching  scenarios.  
Consequently, the teacher has to decide which indicators are relevant for judging groups 
or learners at a given time.

In terms of  the  data  processing,  SonarQube  (version 8.9 LTS)  covers  27 languages, 
including CSS, JavaScript, and TypeScript as well as the corresponding analysis rules. 
Although this is a very good basis, false positives can still occur (e.g. S2, S4, S5, and  
S6). In this case, the rules used must be understood and adapted if necessary (i.e. by the 
teachers). Also, the coding conventions defined by the teams (e.g. in ESLint, JSLint) 
were not considered. For the planning activities, we did not consider the structure of the 
Kanban board (columns, movement of issues) and the degree of planning (e.g. defining 
an issue, assigning the issue, estimating the workload, setting a due date) as it could be 
derived from the data.

Besides, solutions are still being sought to avoid subjective assessments due to teachers’ 
implicit  bias  against  females  and  other  underrepresented  minorities  in  teams  (e.g. 
[Be10]) in combination with teacher dashboards.

5 Conclusion and outlook

In this paper, we posed 4 research questions, identified, defined, and validated a total of  
32 indicators for collaborative learning in software development teams. The resulting 
model describes collaborative interactions in programming teams considering 16 group 
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participation indicators (RQ1), 9 indicators for group cohesion (RQ2) and 7 indicators 
for code maintainability (RQ3). In addition, we presented a data processing pipeline for 
extracting, calculating, and visualizing these indicators on a teacher dashboard (RQ4). 
This approach enables teachers to keep track of complex group activities and individual 
contributions and then provide targeted formative feedback to the groups.

Next semester, we plan to use the tool as a monitoring instrument in a programming  
course. We hope that the tool will help teachers to provide better guidance and support  
regarding programming performance, participation in learning as well as group climate. 
So far,  we focused on an iteration-based analysis.  We plan to update the model and 
analysis to support three additional features: analysis of all previous iterations, relative 
comparisons between dedicated iterations either per person or per team, and individual 
trend analysis as well as enabling the teacher to dive into representative code segments.
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