
Andreas Lingnau (Hrsg.): Proceedings of DELFI Workshops 2021,
Dortmund, Germany, 13. September 2021 15

Indicators of group learning in collaborative software
development teams

Benjamin Weiher 1, Niels Seidel 1 , Marc Burchart 1 , Dirk Veiel 2

Abstract: The supervision of collaborative software projects is a great challenge for teachers. All
learners involved must be able to participate in the learning process and group collaboration must
be ensured, while the program code can take on a considerable size. In this paper, we identified,
defined, and validated a total of 32 indicators for collaborative learning in software development
teams. The resulting model describes collaborative interactions in programming teams considering
7 indicators for code quality, 16 group participation indicators, and 9 indicators for group
cohesion. In addition, we presented a data processing pipeline for extracting, calculating, and
visualizing these indicators on a teacher dashboard. This approach enables teachers to keep track
of complex group activities and individual contributions, and subsequently provide targeted
formative feedback to the groups.

Keywords: Teaching Collaborative Programming; Learning Analytics; Group Assessment

1 Introduction

Software development takes place almost exclusively in teams, so it is especially
important to be a team player, to be organized, and to communicate properly [Ah13,
RTLr19]. Learning such competencies is crucial for employability and has great
relevance for the job market. In higher education, these skills are therefore often trained
in groups, within the context of computer-supported collaborative learning (CSCL)
[SMG20]. In computer science education, students must be prepared for this
collaboration by developing their competencies in the required methods (e.g. Scrum or
Adaptive Software Development), tools, and the programming languages used. Hence
version control systems (e.g. Git, CVS, and SVN) and issue tracking systems (e.g.
GitLab, Bugzilla, and Zendesk) are widely used, both in education and in the software
industry (e.g. [Gl19]). These systems generate data that can be used not only for risk
analysis of projects (e.g. [MGM19]) but also to support students working together on a
software project.

1 FernUniversität in Hagen, Faculty of Mathematics and Computer Science, Universitätsstraße 1, 58084
Hagen, benjmin.weiher@studium.fernuni-hagen.de, niels.seidel@fernuni-hagen.de, marc.burchart@fernuni-

hagen.de, Niels Seidel https://orcid.org/0000-0003-1209-5038, Marc Burchart https://orcid.org/0000-

0001-5668-7137,

2 FernUniversität in Hagen, Research Cluster D²L², Universitätsstraße 27, 58084 Hagen, dirk.veiel@fernuni-

hagen.de, Dirk Veiel https://orcid.org/0000-0003-0228-103X

c b e doi:18.18420/provided-by-editor-02

https://orcid.org/0000-0002-1825-0097
https://orcid.org/0000-0002-1825-0097
https://orcid.org/0000-0002-1825-0097
https://orcid.org/0000-0002-1825-0097

16 First name 1 last name 1 and first name 2 last name 2

In this paper, we argue that teachers can benefit from monitoring tools that represent
students’ contributions in collaborative software development tasks. When supervising
student teams in these settings, teachers need to maintain the learning situation for the
students, ensure that all team members acquire knowledge in the different domains (e.g.
project management, design, development, and testing), support completely
heterogeneous students (e.g. regarding skills, pre-knowledge, and interests) when
problems and questions arise, and provide them appropriate feedback during the
development phases. This guidance and support is an enormous challenge. In software
project teams, the lines of code increase enormously over time. The code and its quality
can often only be analysed with great effort. Furthermore, the individual contribution of
each student across multiple files, commits, and branches is not easily to identify. Hence,
the degree of collaboration can only be examined through student reports. Difficulties of
individual students or even free-riding effects can remain hidden over a long period of
time, so that the participation of all students in the learning process cannot be ensured.

Our presented approach aims to support teachers in the challenges mentioned above. The
goal of this work is to identify, define, and validate indicators for collaborative learning
in software development teams. To address the particularities of collaborative learning
and software engineering, we pose the following three research questions: (RQ1) What
indicators can be used to describe learner participation in collaborative programming
teams? (RQ2) Which indicators provide insights into collaborative software
development? (RQ3) What indicators are suitable for capturing code quality in dedicated
programming languages? Finally, a fourth research question is posed combining the
answers of the previous questions: (RQ4) How can teachers be supported in using these
indicators? The indicators are derived from existing literature and adapted to the subject
matter. Before the indicators are prepared for use by teachers, a validation is performed
using real data sets from four learning groups. As a result of this work, teachers will be
able to track complex group activities, code quality and individual contributions, and
subsequently provide targeted formative feedback to the groups.

With this paper, we contribute to the field of CSCL and learning analytics. Our
contribution to CSCL consists of a model describing collaborative interactions in
programming teams considering coding, group participation, and group cohesion.
Regarrding learning analytics, we present a processing pipeline for analysing data from
version control systems and issue tracking systems. From this pipeline, we gain data for
a teacher dashboard for monitoring individual and group-related progress across multiple
iterations of software development.

2 Related Works

In terms of teaching and learning, there is already some work that investigates
collaborative software development [Ri19, SA20, Bu20]. However, these only consider
individual contributions, not the group collaboration. [Gi20] analyzed commit messages

Short title of article 17

and classified team members as being collaborative, cooperative, or solo-submitters. In
contrast to our work, the authors only considered data from the version control system,
but did not include the communication and discussion necessary for project management
and design. Furthermore, code metrics have not been examined. In a case study
[TWM20] investigated the use of GitHub as a teaching tool for individual assignments.
By analyzing the commit history and evaluating the comment quality the authors tried to
classify students in order to find proxies for grading. This attempt was not very
successful. Unlike our research, [TWM20] did not intend to support teaching on
collaborative software development through formative but data-driven feedback
provided by the teacher. Apart from the commits and the code comments, only a very
small set of data was used for the modeling of indicators. The resulting source code and
the communication among the students was not considered. More advanced analytics
approaches consider, for example, co-editing networks [GSS19], commit quality
[AAM15], refactoring detection [Ts18], change patterns [MM19], and risky commit
prediction [RGS15], but without addressing aspects of learning. Beside that, automatic
methods are still lacking for specific problems such as common errors in the use of Git
[Er20]. Personal assistance systems support collaboration only on a low-level [ČS05] or
even hinder it [We20], which is why instructors still play a central role in guiding
student groups. In our approach we wanted to use a comprehensive set of indicators to
flexibly support different didactic scenarios, team and project structures, and software-
technical possibilities.

3 Model for group learning in software development

Before we can start modeling, we need to know the data that is available for modeling
and can later be extracted automatically from the systems used. In this case, we rely on a
version control system and an issue tracker. Version control systems provide three types
of information: (1) code-related data regarding the quantity and quality of the program
(e.g. code smells, security hotspots) as well as (2) logs and (3) content of commits,
branches, and merges. Since the content data requires a qualitative analysis in view of
the respective task, we focus on quantitatively exploitable data from the source code and
the logs which are described in the following subsections. Issue trackers complement
this data with created and commented issues, merge requests, and project plans (e.g.
Kanban board). The presented model aims at selecting a set of variables from version
control system and source code that can be translated into quantitative indicators that are
easy to acquire and process by teachers. The indicators should describe individual efforts
as well as the cooperation in the team. The chosen subset helps teachers to provide
regular individual and group feedback in terms of learning practical skills and increasing
employability. Indicators focusing on efficiency gains and risk avoidance appeared to be
more relevant in professional and economic contexts and have not been not considered
here. The resulting indicators that are relevant for learning can be later used to present an
overall picture of the collaborative process within a student-led software development
team. This picture is intended to ensure and promote appropriate peer teaching with the

18 First name 1 last name 1 and first name 2 last name 2

focus on supporting students in solving practical tasks or problems and developing
programming skills. The model is based on the previous work of [Ca10] on effective
group models and the considerations of [HG01] about teamwork.

3.1 Indicators for software code maintainability (RQ3)

Usually, as the size of a software project increases, so does the number of program
errors, security vulnerabilities, and the maintenance effort. Developers therefore try to
use tools and selected programming languages to detect certain types of errors at an early
stage or even to exclude them completely. Even novice programmers can make use of
these tools and improve the quality of their code, as long as they have configured their
development environment accordingly and as long as they can understand and
implement the advice. The same tools for the analysis of the software code
maintainability (cf. [Ar20]) are suitable for the formative analysis and assessment of
learning achievements in programming. We consider the indicators S1–S7 to be relevant
in order to answer RQ 3: (S1) Programming languages: Number of programming
languages including style sheet languages in use. In web development, for instance, this
indicator can help to identify full-stack developers compared to the one that stick to a
single programming language. (S2) Code smells: [Fo98] introduces the metaphor “code
smells” to describe the patterns in the code that indicate the need for code refactoring.
The external behavior of the code remains the same when refactoring, while the internal
structure improves, i.e., it appears tidier, more traceable, and easier to maintain [EM02].
(S3) Cognitive complexity: Cognitive complexity is a measure of the understandability
of a given piece of code, the complexity of which is determined by the number and order
of control structures [Ca18]. (S4) Security hotspots: The security hotspot describes the
sensitive areas where security is more important than in other areas. The most important
security hotspots are authentication, storage, cryptography, logic errors, synchronization
and timing, and validation [Se19]. (S5) Vulnerabilities: The number of vulnerabilities
that refers to problems in the source code identified from poor coding patterns [Fo98]
that lead to bugs, security vulnerabilities, performance problems, design flaws, and other
difficulties [So21]. (S6) Bugs: Number of errors due to a specification that was not
adhered to or incorrectly implemented (e.g. typing of return values). (S7) Duplicated
lines: The absolute number of physical lines (not just lines of code) of source code that
are involved in at least one additional location [CP13].

3.2 Indicators for participation (RQ1)

Extent of participation The extent of participation is a simple but essential aspect of
collaboration. For collaboration to occur at all, the student must participate in the project.
Following [Ta19], Commit Count (P1), Opened Merge Request Count (P2), Branch
Count (P3), Comment Count (P4), and Issue Count (P5) has to be recorded.

Short title of article 19

Equal participation In a collaborative software project, individual project members
may do most of the work. In an effective collaborative group, all members should
participate to a similar degree without monopolizing behavior [Ca10]. Equal
participation can be considered by the absolute deviation from the mean. In this way, the
scope of individual contributions within a group can be quantified and compared using
the indicators Equal Commits (P6), Equal Merges (P7), Equal Issues (P8), and Equal
Comments (P9).

Extent of roles Related to participation, another factor may regard the variety of roles
taken on by the members of the group. A good group should be one in which roles are
played flexibly with participants rotating their roles during an iteration. This seems to be
indicative of the attention paid to the whole group’s process of planning tasks,
developing code, and reviewing the quality. In small groups, the extent to which
different roles are performed should be independent of assigned roles in agile projects
(e.g. product owner) or traditional roles like team leader or quality engineer. In this
sense, we define an Active Reviewer (P10) as someone who has left a comment on a
merge request. This indicator is the ratio of active reviewers to students who have
created a merge request. The share of Active Developer (P11) in a team considers those
who created merge requests. The relative number of Active planner (P12) created or
modified an issue.

Rhythm The rhythm of interactions is a metric that allows conclusions to be drawn
about the synchronicity of activities. Regular and constant participation can be
considered as an indicator of the individual’s ability to deal primarily with the needs of
the group rather than with personal problems, which also avoids the risk of distraction
and a decline in cognitive tension. Considered for this purpose are the indicators Coding
Days (P13), Review Days (P14), Testing Days (P15), and Planning Days (P16). Coding
Days, for instance, counts the number of days a developer has contributed code to the
project. Similarly, this applies to other important team tasks such as planning, reviewing
each other’s work, and testing.

3.3 Indicators for cohesion (RQ2)

Caring for one another among team members is critical to strengthening mutual trust and
a sense of belonging, as well as the perception of positive interdependence among
members of a group. (C1) Commit-Comment-Ratio: Describes the ratio of comments in
commits to the number of commits created. In a collaborative project, the proportion of
own commits and the number of comments should be balanced to ensure that the student
both contributes their own code to the project and is willing to look at other students’
code. (C2) Reaction Time: Response time is the time it takes a reviewer to respond to a
comment directed to them. The other team members should respond to a comment on
time so that the questioner does not lose time. (C3) Responsiveness: The response time is
the average time taken to respond to a reviewer’s comment with either another comment
or a code revision. It shows the time between the last comment of the reviewer and the

20 First name 1 last name 1 and first name 2 last name 2

response of the creator of a merge request. (C4) Follow on Commits: The number of
code revisions added to a pull request after it was opened for review. Knowing the
number of follow-up commits added to an open pull request will give you insight into
the strength of your code review process. If you see a trend where many follow-up
commits are added, further planning and testing may be required [Pl21]. The
Receptiveness (C6) is the frequency with which the creator of the merge request takes
comments as a reason to change the code (cf. [Pl21]). In addition to that, the Time to first
Comment (C6) specifies the time between opening a pull request and the first reviewer
commenting (cf. [Pl21]) and the Time to resolve (C7) is the time it takes to close a pull
request (cf. [Pl21]).

Mutual help in programming can be expressed in continuing or improving the work of
others. Therefore, the indicator Helping others (C8) describes the percentage of commits
that a developer has used to modify the code of his team members (cf. [Pl21]. Reactivity
to proposals (C9) Suggestions for new code contributions, which are called merge or
pull requests, are essential for progress in a project. Therefore, suggestions from a team
member must be immediately considered by the team.

4 Realisation and validation

Building on the indicators defined in the last section, we describe the technical
processing steps for determining the indicators, present a dashboard for monitoring
groups, and validate the indicators using data from four student groups.

4.1 Analytics environment

The analytics environment is responsible for storing the transformed raw GitLab data,
their analysis, and presentation to the teachers. The component consists of four modules:
First, the Extract, Load, Transform (ELT) [Go10] module performs the daily job of
extracting the data from the GitLab projects, loading it to the Data Lake module, and
pre-processing it for the analysis. Using SonarQube [So21] a code analysis is performed
with the GitLab data, before the described indicators are computed. The Data Lake, as
the second module, stores the raw data and their transformed version in a relational
database schema. For data Analysis the third module performs additional analytics,
including data validation as described in section 4.2. Finally, the fourth module consists
of a Analytics Dashboard (AD) used by teachers. It is based on the R and Shiny3
package. For the AD the data from the Analytics and the Datalake is processed to a web-
based interactive visualization. Fig. 1 shows the resulting dashboard for an exemplary
group of 6 students that have been collaborated over 3 iterations. The indicators’ values
have been normalized for the sake of comparison. The visualization as small multiples
enables a comparison between students on each iteration and for all indicators. For

3 See https://shiny.rstudio.com/ (last accessed: 2021-06-27).

https://shiny.rstudio.com/

Short title of article 21

instance, user 33 was commendably able to reduce the cognitive complexity of his code
over the three iterations. User 34’s comparatively low participation (e.g., P1, P2, P4)
should prompt the teacher to ensure learning success. Regarding group cohesion, the
teacher could discuss with the team how to achieve mutual help during the programming
task, since indicators C1, C2, C3, and C8 have low values.

Fig. 1: Example output for the first three iterations of group C including the dimensions code
quality (top), participation (middle), and cohesion (bottom)

22 First name 1 last name 1 and first name 2 last name 2

4.2 Validation of indicators

Our first attempt to validate the model described in section 3 aims at testing the
appropriateness, feasibility, and expressiveness of the indicators. For the validation, we
used data from four mixed software development teams that worked on a complex task
over 7 iterations à 2 weeks as part of the course “Fachpraktikum CSCW” (cf. Tab. 1).
The agile teams worked on different tasks, which were however comparable in terms of
effort and demand, in regular dialog with a role-played customer. The teams consisted of
5 to 6 students from Bachelor’s and Master’s programs in Computer Science. GitLab
was used for collaboration. Each group worked in at least one GitLab project using
provided issue tracker, version control, etc.

Group Semester Participants Repositories Issues Commits
A WS 2019/20 5 1 191 4402
B WS 2020/21 5 1 192 2962
C WS 2020/21 6 1 145 2419
D WS 2020/21 5 3 128 1441

Tab. 1: Overview of the datasets used for validating the model

The indicators can be considered appropriate because they were piloted against the data
of the teams in Tab. 1 and discussed with experienced teachers. In addition, the
indicators have been adopted from existing tools and research. In terms of feasibility, it
must be ensured that all indicators in the model can be calculated using data from real
courses. The tests have shown that the calculation is feasible for the datasets at hand. To
validate the expressiveness of the indicators as a formative feedback instrument in the
supervision of student teams, the indicators should discriminate students to estimate
differences among group members. This can be achieved by calculating the standard
deviation (SD) among group members and the discrimination index (DI, see [De10])
across all indicators. The SD indicates heterogeneous values of an indicator within a
group. If, on the other hand, the values within a group were always the same, the
indicator would have little significance for a teacher. The number of review and planning
days appeared to be often the same for all group members and across all iterations.
Certain indicators showed to be less expressive in the last iteration (e.g. C1, C2, C5, and
C6) when the groups were mainly focused on bug fixing (e.g. S6). The DI is the
correlation of a particular indicator to the total score of all other indicators of a student.
Values above .3 are considered good, between .2 and .3 acceptable, between .1 and .2
marginal, and below .1 poor. Indicators that are not sufficiently different from others,
i.e., have poor DI, should be removed from the model. Within groups and iterations, no
indicators had a poor DI.

4.3 Discussion

In this section, we briefly present and discuss the findings, limitations, and shortcomings
of our current approach. We will first address the measured parameters, then the

Short title of article 23

processing, and finally the use of analytics. For reasons of space, we will limit ourselves
to a brief listing regarding the measured parameters. (1) Since we used GitLab as the
main environment for collaboration, the team lacked an integrated communication
option. Therefore, they communicated outside of GitLab so we could not track it. (2)
Commits (e.g. P1, P6, and C4) often contained only small and rarely major changes. (3)
In pair programming, usually only the driver made changes, while the observer or
navigator did not show up in the commit log (e.g. C8). (4) There was a natural
fluctuation in team performance over the course of a semester. (5) The previous point
was also influenced by external factors, e.g. holidays, vacations, sick leave. (6) Other
study-related tasks or exams and associated workloads were not considered. (7) It was
assumed that all students have the same preposition (e.g., skills, experiences, personality
[NTC20], health), i.e., related diversity aspects must be taken into account by the
teacher. (8) The measured quantities were considered comparable atomic units, i.e. all
commits were considered equal even if they differed in terms of number of changes,
level of difficulty, and their relevance to the final program (e.g. P1, P6, and C4). (9)
Students may have used code snippets or libraries from others (e.g., from the web)
without acknowledging or referencing the sources. (10) Since students had to perform all
roles at least once, role changes occurred after one iteration, which then led to different
behaviours that were not yet considered in the validation of our approach. (11)
Compared to many related works (e.g. [Gi20, TWM20]) we did not classify groups or
individuals to provide a flexible tool for different learning and teaching scenarios.
Consequently, the teacher has to decide which indicators are relevant for judging groups
or learners at a given time.

In terms of the data processing, SonarQube (version 8.9 LTS) covers 27 languages,
including CSS, JavaScript, and TypeScript as well as the corresponding analysis rules.
Although this is a very good basis, false positives can still occur (e.g. S2, S4, S5, and
S6). In this case, the rules used must be understood and adapted if necessary (i.e. by the
teachers). Also, the coding conventions defined by the teams (e.g. in ESLint, JSLint)
were not considered. For the planning activities, we did not consider the structure of the
Kanban board (columns, movement of issues) and the degree of planning (e.g. defining
an issue, assigning the issue, estimating the workload, setting a due date) as it could be
derived from the data.

Besides, solutions are still being sought to avoid subjective assessments due to teachers’
implicit bias against females and other underrepresented minorities in teams (e.g.
[Be10]) in combination with teacher dashboards.

5 Conclusion and outlook

In this paper, we posed 4 research questions, identified, defined, and validated a total of
32 indicators for collaborative learning in software development teams. The resulting
model describes collaborative interactions in programming teams considering 16 group

24 First name 1 last name 1 and first name 2 last name 2

participation indicators (RQ1), 9 indicators for group cohesion (RQ2) and 7 indicators
for code maintainability (RQ3). In addition, we presented a data processing pipeline for
extracting, calculating, and visualizing these indicators on a teacher dashboard (RQ4).
This approach enables teachers to keep track of complex group activities and individual
contributions and then provide targeted formative feedback to the groups.

Next semester, we plan to use the tool as a monitoring instrument in a programming
course. We hope that the tool will help teachers to provide better guidance and support
regarding programming performance, participation in learning as well as group climate.
So far, we focused on an iteration-based analysis. We plan to update the model and
analysis to support three additional features: analysis of all previous iterations, relative
comparisons between dedicated iterations either per person or per team, and individual
trend analysis as well as enabling the teacher to dive into representative code segments.

Acknowledgments

This research was supported by the Research Cluster “Digitalization, Diversity and
Lifelong Learning – Consequences for Higher Education” (D2L2) of the FernUniversität
in Hagen, Germany.

Bibliography

[AAM15] Agrawal, Kapil; Amreen, Sadika; Mockus, Audris: Commit Quality in Five High Per-
formance Computing Projects. In: Proceedings of the 2015 International Workshop on
Software Engineering for High Performance Computing in Science. SE4HPCS ’15.
IEEE Press, pp. 24–29, 2015.

[Ah13] Ahmed, Faheem; Capretz, Luiz Fernando; Bouktif, Salah; Campbell, Piers: Soft skills and
software development: A reflection from software industry. International Journal of
Information Processing and Management, 4(3):171–191, 2013.

[Ar20] Ardito, Luca; Coppola, Riccardo; Barbato, Luca; Verga, Diego: A Tool-Based Perspective
on Software Code Maintainability Metrics: A Systematic Literature Review. August
2020. Publication Title: Scientific Programming Type: Review Article.

[Be10] van den Bergh, Linda; Denessen, Eddie; Hornstra, Lisette; Voeten, Marinus; Holland, Rob
W: The Implicit Prejudiced Attitudes of Teachers: Relations to Teacher Expectations
and the Ethnic Achievement Gap. American Educational Research Journal, 47(2):497–
527, jun 2010.

[Bu20] Buffardi, Kevin: Assessing Individual Contributions to Software Engineering Projects with
Git Logs and User Stories. In: Proceedings of the 51st ACM Technical Symposium on
Computer Science Education. SIGCSE ’20, ACM, New York, NY, USA, pp. 650–656,
2020.

[Ca10] Calvani, Antonio; Fini, Antonio; Molino, Marcello; Ranieri, Maria: Visualizing and
monitoring effective interactions in online collaborative groups. British Journal of
Educational Technology, 41(2):213–226, March 2010.

Short title of article 25

[Ca18] Campbell, G. Ann: Cognitive complexity: an overview and evaluation. In: Proceedings of
the 2018 International Conference on Technical Debt. TechDebt ’18, ACM, New
York, NY, USA, pp. 57–58, May 2018.

[CP13] Campbell, G. Ann; Papapetrou, Patroklos P.: SonarQube in Action. Manning Publications
Co., USA, 1st edition, 2013.

[ČS05] Čubranić, Davor; Storey, Margaret Anne D: Collaboration Support for Novice Team
Programming. In: Proceedings of the 2005 International ACM SIGGROUP
Conference on Supporting Group Work. GROUP ’05, ACM, New York, NY, USA,
pp. 136–139, 2005.

[De10] De Champlain, André F: A primer on classical test theory and item response theory for
assessments in medical education. Medical education, 44(1):109–117, jan 2010.

[EM02] Emden, E. van; Moonen, L.: Java quality assurance by detecting code smells. In: Ninth
Working Conference on Reverse Engineering, 2002. Proceedings. pp. 97–106,
November 2002.

[Er20] Eraslan, Sukru; Rios, Julio César Cortés; Kopec-Harding, Kamilla; Embury, Suzanne M;
Jay, Caroline; Page, Christopher; Haines, Robert: Errors and Poor Practices of
Software Engineering Students in Using Git. In: Proceedings of the 4th Conference on
Computing Education Practice 2020. CEP 2020, ACM, New York, NY, USA, 2020.

[Fo98] Fowler, Martin: Refactoring: Improving the Design of Existing Code [Book]. 1998.

[Gi20] Gitinabard, Niki; Okoilu, Ruth; Xu, Yiqao; Heckman, Sarah; Barnes, Tiffany; Lynch,
Collin: , Student Teamwork on Programming Projects: What can GitHub logs show
us?, 2020.

[Gl19] Glassey, Richard: Adopting Git/Github within Teaching: A Survey of Tool Support. In:
Proceedings of the ACM Conference on Global Computing Education. CompEd ’19,
ACM, New York, NY, USA, pp. 143–149, 2019.

[Go10] Gour, Vishal; Sarangdevot, SS; Tanwar, Govind Singh; Sharma, Anand: Improve perfor-
mance of extract, transform and load (ETL) in data warehouse. International Journal
on Computer Science and Engineering, 2(3):786–789, 2010.

[GSS19] Gote, Christoph; Scholtes, Ingo; Schweitzer, Frank: Git2net: Mining Time-Stamped Co-
Editing Networks from Large Git Repositories. In: Proceedings of the 16th
International Conference on Mining Software Repositories. MSR ’19. IEEE Press, pp.
433–444, 2019.

[HG01] Hoegl, Martin; Gemuenden, Hans Georg: Teamwork Quality and the Success of
Innovative Projects: A Theoretical Concept and Empirical Evidence. Organization
Science, 12(4):435–449, August 2001.

[MGM19] Menezes, Júlio; Gusmão, Cristine; Moura, Hermano: Risk factors in software
development projects: a systematic literature review. Software Quality Journal,
27(3):1149–1174, 2019.

[MM19] Martinez, Matias; Monperrus, Martin: Coming: A Tool for Mining Change Pattern
Instances from Git Commits. In: Proceedings of the 41st International Conference on
Software Engineering: Companion Proceedings. ICSE ’19. IEEE Press, pp. 79–82,
2019.

26 First name 1 last name 1 and first name 2 last name 2

[NTC20] Nunes, Ingrid; Treude, Christoph; Calefato, Fabio: The Impact of Dynamics of
Collaborative Software Engineering on Introverts: A Study Protocol. In: Proceedings
of the 17th International Conference on Mining Software Repositories. MSR ’20,
ACM, New York, NY, USA, pp. 619–622, 2020.

[Pl21] Pluralsight: Flow metrics Pluralsight Help Center. 2021.

[RGS15] Rosen, Christoffer; Grawi, Ben; Shihab, Emad: Commit Guru: Analytics and Risk
Prediction of Software Commits. In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. ESEC/FSE 2015, ACM, New York, NY, USA,
pp. 966–969, 2015.

[Ri19] Rios, Julio César Cortés; Kopec-Harding, Kamilla; Eraslan, Sukru; Page, Christopher;
Haines, Robert; Jay, Caroline; Embury, Suzanne M: A Methodology for Using GitLab
for Software Engineering Learning Analytics. In: Proceedings of the 12th International
Workshop on Cooperative and Human Aspects of Software Engineering. CHASE ’19.
IEEE Press, pp. 3–6, 2019.

[RTLr19] Rosli, Marshima; Tempero, Ewan; Luxton-reilly, Andrew: A Systematic Mapping Study
on Data Quality in Software Engineering Data Sets. Journal of Universal Computer
Science, 25(1):16–41, 2019.

[SA20] Sandee, Jan Jaap; Aivaloglou, Efthimia: GitCanary: A Tool for Analyzing Student
Contributions in Group Programming Assignments. In: Koli Calling ’20: Proceedings
of the 20th Koli Calling International Conference on Computing Education Research.
Koli Calling ’20, ACM, New York, NY, USA, 2020.

[Se19] Sensaoui, Abderrahmane; Aktouf, Oum-El-Kheir; Hely, David; Di Vito, Stephane: An In-
depth Study of MPU-Based Isolation Techniques. Journal of Hardware and Systems
Security, 3(4):365–381, December 2019.

[SMG20] Silva, Leonardo; Mendes, Antonio Jose; Gomes, Anabela: Computer-supported collabo-
rative learning in programming education: A systematic literature review. IEEE Global
Engineering Education Conference, EDUCON, 2020-April(May):1086–1095, 2020.

[So21] SonarQube: , Code Quality and Code Security, 2021.

[Ta19] Tamburri, Damian A.; Palomba, Fabio; Serebrenik, Alexander; Zaidman, Andy: Dis-
covering community patterns in open-source: a systematic approach and its evaluation.
Empirical Software Engineering, 24(3):1369–1417, June 2019.

[Ts18] Tsantalis, Nikolaos; Mansouri, Matin; Eshkevari, Laleh M; Mazinanian, Davood; Dig,
Danny: Accurate and Efficient Refactoring Detection in Commit History. In:
Proceedings of the 40th International Conference on Software Engineering. ICSE ’18,
ACM, New York, NY, USA, pp. 483–494, 2018.

[TWM20] Tushev, Miroslav; Williams, Grant; Mahmoud, Anas: Using GitHub in large software
engineering classes. An exploratory case study. Computer Science Education,
30(2):155–186, apr 2020.

[We20] Wessel, Mairieli: Leveraging Software Bots to Enhance Developers’ Collaboration in
Online Programming Communities. In: Conference Companion Publication of the
2020 on Computer Supported Cooperative Work and Social Computing. CSCW ’20
Companion, ACM, New York, NY, USA, pp. 183–188, 2020.

